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Abstract
By using the method of symbolic dynamics, we study the bifurcations of steady
states in a class of lattices of nonlinear discrete Klein–Gordon type with double-
quadratic on-site potential. We derive by virtue of the admissible condition
the critical value ε0 of the coupling strength, below which the steady states
persist without bifurcations. If the coupling coefficient ε passes through the
critical value, some of the steady states disappear. Meanwhile there are no new
steady states created as ε varies. We obtain bifurcation values of some lower-
order spatially periodic steady states by introducing the concept ‘characteristic
polynomial’ of periodic sequences.

PACS numbers: 05.45.−a, 02.30.Oz

1. Introduction

In this paper, we study a class of one-dimensional lattices of nonlinear discrete Klein–Gordon
type with Hamiltonian

H =
∑

n

[
p2

n

2
+

ε

2
(xn − xn−1)

2 + V (xn)

]

where V (u) is a symmetric, double-quadratic potential [5, 15]:

V (u) = 1
2 (u − sgn(u))2

ε > 0 measures the coupling strength. The coupled ordinary differential equations defined by
this Hamiltonian are

ẍn = ε(xn+1 − 2xn + xn−1) + f (xn) (1.1)

where f (u) = −u + sgn(u).
Recently, much work has been devoted to studying nonlinear localized solutions in lattice

systems, e.g., discrete breathers (DBs) [5, 12, 13, 15], which are time periodic and spatially
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localized, and static localized solutions [3, 4, 9, 12, 14]. The existence and properties
of nonlinear localized solutions of system (1.1) have been studied in [5, 10, 15–18]. To
investigate the existence of discrete breathers and multibreathers, one should know, first of all,
the steady states {vn} of system (1.1), then write the solution xn(t) as

xn(t) = vn + φn(t). (1.2)

Substituting (1.2) into (1.1), one obtains the equations φn should satisfy. Then one looks
for the conditions on frequencies to ensure that φn(t) are time periodic and that the amplitudes
of φn(t) are exponentially decaying (see [15]). Here we see a close relation between discrete
breathers and steady states in system (1.1).

In this paper we study the bifurcations of steady states of system (1.1). There are several
reasons. First, as introduced above, there is a close relation between DBs and the localized
steady states. Second, the existence and stability of steady states in lattice systems also attract
much attention in the literature [3, 9, 12, 14]. Third, there is a simple and efficient method
called ‘anti-integrability’ [2, 14] for investigating steady states in weakly coupled systems,
but this method cannot be applied directly to system (1.1) because of the discontinuity of the
nonlinear term f . When one applies the ‘anti-integrability’ method, one obtains a sufficient
condition, i.e., there exists ε0 > 0 such that all the steady states of system (1.1) in the limit
of vanishing coupling persist for 0 < ε < ε0. One needs to know whether these steady states
persist or bifurcate for ε > ε0, and whether there are new steady states created as ε varies.
Finally, when bifurcations actually occur, which steady state undergoes bifurcation and when?

We try to answer some of these questions for system (1.1). In fact, many interesting
results have been obtained on the persistence and bifurcations of the steady states for system
(1.1). The same model, even with asymmetric on-site potential, was studied by Schilling
[17], Reichert and Schilling [16], Häner and Schilling [6] and Vollmer et al [18]. In [16, 17],
by the use of a Green function method, it was rigorously proved that for ε < 3

4 (the critical
value ε0 = 3

4 corresponds to the critical value ηc = 1
3 in [16, 17]) there is a steady state

corresponding to each sequence θ = (θn) ∈ {−1, 1}Z . The remaining question is whether
the steady state is unique. Here we construct ‘Milnor’s map’ [8], and apply the contraction
mapping theorem to show that the steady state corresponding to each sequence is unique
if it exists. Hence we have established a one-to-one correspondence between the steady
states and the sequences of pseudo spins θ ∈ {−1, 1}Z provided ε < 3

4 , that is, there are
no bifurcations for the steady states of system (1.1) if ε ∈ [

0, 3
4

)
. Note that for ε = 0, this

one-to-one correspondence is obvious. But it is not trivial that this one-to-one correspondence
exists for ε > 0 (see [2]). It involves the problem of structural stability of system (1.1)
(see also [12]). The bifurcation behaviour for ε > 3

4 (corresponding to η > 1
3 in [18]) was

studied in [18] in order to calculate the number of metastable states. Here we introduce the
characteristic polynomial of the periodic sequence, and apply Descartes’s rule of signs to show
that for the periodic sequences with periods less than or equal to 5, the corresponding steady
states disappear forever when ε passes through the bifurcation values. This partly supports
the observation in [18] that the numbers of metastable configurations decrease as ε increases.

2. Persistence and bifurcations of steady states

The steady states of system (1.1) were studied in [16, 17] with a Green function method. The
correspondence between the steady states of system (1.1) and a two-dimensional map was
also established in [16]. In this section, we prove by the contraction mapping theorem that
the steady state corresponding to each sequence θ = (θn) is unique, which can guarantee the
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one-to-one correspondence between the steady states and all the sequences provided ε < 3
4 .

This implies that there are no new-born steady states by adding the spatial interactions.
The steady states of system (1.1) can be transformed into the zeros of map Fε defined in

�∞:

(Fε(x))n = f (xn) + ε(xn+1 − 2xn + xn−1).

For each element x = (xn) ∈ �∞, we introduce a sequence

θ = (θn) ∈ �2 = {−1, 1}Z
given by θn = sgn(xn). Then the zero x = (xn) of Fε satisfies

θn − xn + ε(xn+1 − 2xn + xn−1) = 0

which leads to

xn = ε(xn+1 + xn−1) + θn

1 + 2ε
.

On the other hand, for each sequence θ = (θn), define a map Mθ from �∞ to �∞:

(Mθ(x))n = ε(xn+1 + xn−1) + θn

1 + 2ε
.

Mθ is called Milnor’s map in [8]. One can easily check that Mθ is a contraction for ε > 0.
Indeed, for x = (xn) and y = (yn) in �∞,

‖Mθ(x) − Mθ(y)‖ = sup
n∈Z

∣∣∣ ε

1 + 2ε
(xn+1 − yn+1 + xn−1 − yn−1)

∣∣∣
� 2ε

1 + 2ε
‖x − y‖ = δ‖x − y‖

in which δ < 1 for ε > 0. By the contraction mapping theorem, Mθ has a unique fixed point
x = (xn). If the fixed point x = (xn) of Mθ satisfies the admissible condition

θn = sgn(xn) =
{−1 xn � 0

1 xn > 0

then x is a zero of Fε.
Let

A = {x = (xn)|x is the fixed point of Mθ, θ = (θn) ∈ �2 and θn = sgn(xn)}.
Then A contains all the zeros of Fε. Indeed, if Fε has a zero x = (xn), then it is exactly the
unique fixed point of Mθ , in which θ = (θn) and θn = sgn(xn).

We refer to θ = (θn) as admissible if Fε has a zero x = (xn) with θn = sgn(xn), otherwise
it is called forbidden.

In the following, we find, for ε > 0, all the zeros of map Fε. To this end, we transform
the second-order difference equation

f (xn) + ε(xn+1 + xn−1 − 2xn) = 0 (2.1)

into a 2D map T:{
un+1 = vn

vn+1 = −un + 2vn − 1
ε
f (vn)

where (un, vn)
T = (xn−1, xn)

T . Then the bounded orbits {(un, vn)
T } correspond to the zeros

of Fε in �∞. Let θn = sgn(vn). Then a bounded orbit of map T satisfies(
un+1

vn+1

)
=

(
0 1

−1 2 + 1/ε

) (
un

vn

)
+

(
0

−θn/ε

)
. (2.2)
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Conversely, if {(un, vn)
T } satisfies (2.2) and θn = sgn(vn), then {(un, vn)

T } is a bounded
orbit of T. Let

U =
(

u

v

)
σn =

(
0

−θn/ε

)
and A =

(
0 1

−1 2 + 2k

)
where 2k = 1/ε > 0. Then

Un+1 = AUn + σn.

The eigenvalues of A are λ1 = 1 + k +
√

2k + k2 > 1, and λ2 = 1/λ1. The eigenvectors
corresponding to λ1 and λ2 are ξ1 = (λ2, 1)T and ξ2 = (λ1, 1)T , respectively. Let P = (ξ1, ξ2).
Then

P −1 = 1

λ2 − λ1

(
1 −λ1

−1 λ2

)
.

Under the transformation Z = P −1U , we have

Zn+1 = P −1Un+1 = P −1APZn + P −1σn =
(

λ1 0
0 λ2

)
Zn + P −1σn.

Denoting the components of Z by z1 and z2, we have(
u

v

)
=

(
λ2 λ1

1 1

) (
z1

z2

)

which leads to v = z1 + z2. Consequently, given θ = (θn), if sgn
(
z1
n + z2

n

) = θn, then {Zn} is
a bounded orbit, that is, {Un} = {PZn} is a bounded orbit of map T.

Let

α = −λ1

(λ1 − λ2)ε
β = λ2

(λ1 − λ2)ε
.

Then P −1σn = (αθn, βθn)
T . In the following, we denote λ2 = 1/λ1 by τ satisfying 0 < τ < 1

for 0 < ε < +∞. From the fact

Zn+1 =
(

λ1 0
0 λ2

)
Zn +

(
αθn

βθn

)

it follows that z1
n+1 = λ1z

1
n + αθn. Consequently,

z1
n = −ατ

∞∑
k=0

τ kθn+k.

By a similar calculation we deduce that

z2
n = β

∞∑
k=1

τ k−1θn−k.

Hence

z1
n + z2

n = 1

(λ1 − λ2)ε

[
θn +

∞∑
k=1

τ k(θn+k + θn−k)

]
.

Then the necessary and sufficient condition for {Zn} being a bounded orbit is{
θn +

∑∞
k=1 τ k(θn+k + θn−k) � 0 if θn = −1

θn +
∑∞

k=1 τ k(θn+k + θn−k) > 0 if θn = 1.
(2.3)
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For θ = (θn) ∈ �2, let

wn(θ) =
∞∑

k=1

τ k(θn+k + θn−k).

Then condition (2.3) is equivalent to

wn(θ) � 1 for n ∈ Z if θn = −1
wn(θ) > −1 for n ∈ Z if θn = 1.

Let

ξ(θ) = inf
θn=1

wn(θ) and η(θ) = sup
θn=−1

wn(θ).

For θ = (θn), from the above discussion, it follows that if ξ(θ) > −1 and η(θ) � 1, then θ is
admissible, i.e., there exists a unique bounded orbit {Un} corresponding to it, or coming back
to our original problem, there is a unique zero x = (xn) of Fε corresponding to θ .

In summary, for θ = (θn) ∈ �2 satisfying ξ(θ) > −1 and η(θ) � 1, the unique zero
x = (xn) of Fε corresponding to θ is

xn = 1

(λ1 − λ2)ε

[
θn +

∞∑
k=1

τ k(θn+k + θn−k)

]
.

In what follows, the symbols +1 and −1 are abbreviated to + and −, respectively, and the
superscript ∞ represents repetition.

For each sequence θ = (θn), we have

ξ(θ) � ξ((−∞ + −∞)) = −2(τ + τ 2 + · · ·) = −2τ

1 − τ

and

η(θ) � η((+∞ − +∞)) = 2(τ + τ 2 + · · ·) = 2τ

1 − τ
.

Theorem 2.1. If the coupling coefficient ε < 3/4, then corresponding to each sequence
θ = (θn), there is a unique zero of Fε.

Proof. Simple calculation shows that τ < 1/3 for ε < 3/4, which implies ξ(θ) > −1 and
η(θ) � 1 for any θ ∈ �2. �

So far we have shown that all the zeros of F0 can be continued to ε < 3/4 with no
new-born zeros. ε0 = 3/4 is the uniform bound for θ ∈ �2. We should mention here that,
except for the uniqueness, the result in theorem 2.1 was first obtained in [16, 17]. The critical
value τ = 1

3 corresponds to η = 1
3 in [16, 17]. However, whether ε = 3

4 is a bifurcation value
needs further analysis. That is, one needs to show that there always exist forbidden sequences
whenever ε > 3

4 . The following theorem shows that not all of these zeros at ε = 0 can be
uniformly continued further than ε0, that is, bifurcations occur as ε passes through ε0 = 3

4 .
Let us denote by [−m + −m] the sequences containing the string (−m + −m) with other

symbols being arbitrary.

Theorem 2.2. For any ε > 3/4, there exists integer m, such that the sequences [−m + −m]
and [+m − +m] are forbidden.

Proof.

ξ([−m + −m]) � ξ((+∞ −m + −m +∞)) � −2τ

1 − τ
+

4τm+1

1 − τ
= −2(τ − 2τm+1)

1 − τ
.
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For any 1/3 < τ < 1, take m large enough so that 3τ − 4τm+1 � 1, which implies
ξ([−m + −m]) � −1. Hence the sequences [−m + −m] are forbidden. Note that

τ = τ(ε) = 1 +
1

2ε
−

√
1

ε
+

1

4ε2
and τ ′(ε) = 1 + 2ε − √

1 + 4ε

2ε2
√

1 + 4ε

hence τ is strictly increasing with respect to ε. Therefore, for any ε > 3/4, we can take m
large enough so that 3τ − 4τm+1 � 1. Then the sequences [−m + −m] are forbidden. The
same conclusion holds also for sequences [+m − +m]. �

Of course, there exist sequences which do not undergo bifurcations for ε > 0, for
example, sequences (−∞) and (+∞) corresponding to the two fixed points of map T, (−∞+∞)

and (+∞−∞) which correspond to heteroclinic orbits, and (+−)∞ which corresponds to a
period-2 orbit. These sequences persist for ε ∈ (0, +∞).

Now let us take a look at the bifurcation values of some lower-order periodic sequences.
For sequence (+ − +)∞ with period 3, the admissible condition (2.3) yields three inequalities:

2(τ 3 + τ 6 + · · ·) > −1 (2.4)

2(τ + τ 2 − τ 3 + τ 4 + τ 5 − τ 6 + · · ·) � 1 (2.5)

and

2(τ 3 + τ 6 + · · ·) > −1. (2.6)

Inequalities (2.4) and (2.6) hold true obviously for τ > 0 and (2.5) is equivalent to

τ 3 − 2τ 2 − 2τ + 1 � 0. (2.7)

Therefore, sequence (+ − +)∞ is admissible if and only if (2.7) holds. We call the polynomial

f3(τ ) = τ 3 − 2τ 2 − 2τ + 1

the characteristic polynomial of sequence (+ − +)∞. Similarly, sequence (− + −)∞ has the
same characteristic polynomial as (+ − +)∞. In the following we show that there exists τ0

such that

τ 3 − 2τ 2 − 2τ + 1 > 0 for 0 < τ < τ0

and

τ 3 − 2τ 2 − 2τ + 1 < 0 for τ0 < τ < 1.

Hence the bifurcation value for sequences (+ − +)∞ and (− + −)∞ is τ0, i.e., the two
sequences are admissible for 0 < τ < τ0 and forbidden for τ0 < τ < 1. Indeed, we have
f3(0) = 1 > 0 and f3(1) = −2 < 0. Consequently, f3 has at least one zero τ0 in the interval
(0, 1). On the other hand, from the signs of the coefficients we know by Descartes’s rule of
signs that f3 has at most two positive real roots. Meanwhile, 1/τ0 is also a positive real root
of f3. So f3 has exactly one root in (0, 1).

We give the characteristic polynomials of some lower-order periodic sequences in
table 1.

One can easily check that other sequences with periods 4 and 5 are always admissible
for 0 < τ < 1. We have observed that these characteristic polynomials are reflexive, hence
if τ ∗ is a real root, so is 1/τ ∗. On the other hand, from the signs of the coefficients, we
deduce that f4 (orf i

5 , i = 1, 2, 3) has at most two positive real roots. Consequently, each
of these polynomials has exactly one positive real root in (0, 1). Therefore, for each of the
above sequences, there is a bifurcation value τ ∗ ∈ (0, 1). For 0 < τ < τ ∗, the corresponding
sequence is admissible, and for τ ∗ < τ < 1, the sequence is forbidden. The bifurcation value
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Table 1. The characteristic polynomials of some lower-order periodic sequences.

Characteristic polynomial Sequence

f4(τ ) = τ 4 − 2τ 3 − 2τ 2 − 2τ + 1 (+ + + −)∞ and (− − − +)∞

f 1
5 (τ ) = τ 5 − 2τ 4 − 2τ 3 − 2τ 2 − 2τ + 1 (+ + + + −)∞ and (− − − − +)∞

f 2
5 (τ ) = τ 5 − 2τ 3 − 2τ 2 + 1 (+ + + − −)∞ and (− − − + +)∞

f 3
5 (τ ) = τ 5 − 2τ 4 − 2τ + 1 (+ + − + −)∞ and (− − + − +)∞

Table 2. The admissible and forbidden intervals of some lower-order periodic sequences including
two homoclinic and two heteroclinic sequences.

Period Sequence Admissible interval Forbidden interval

1 +∞ (0, +∞)

1 −∞ (0, +∞)

2 (+ −)∞ (0, +∞)

3 (+ + −)∞ (0, 1.0002) (1.0002, +∞)

3 (− − +)∞ (0, 1.0002) (1.0002, +∞)

4 (+ + + −)∞ (0, 0.8089) (0.8089, +∞)

4 (− − − +)∞ (0, 0.8089) (0.8089, +∞)

5 (+ + + + −)∞ (0, 0.7676) (0.7676, +∞)

5 (− − − − +)∞ (0, 0.7676) (0.7676, +∞)

5 (+ + + − −)∞ (0, 3.3030) (3.3030, +∞)

5 (− − − + +)∞ (0, 3.3030) (3.3030, +∞)

5 (+ + − + −)∞ (0, 1.6179) (1.6179, +∞)

5 (− − + − +)∞ (0, 1.6179) (1.6179, +∞)

−∞ + −∞ (0, 0.75) (0.75, +∞)

+∞ − +∞ (0, 0.75) (0.75, +∞)

+∞−∞ (0, +∞)

−∞+∞ (0, +∞)

differs from sequence to sequence. For example, the bifurcation values of the three period-5
sequences (+ + + + −)∞, (+ + + − −)∞ and (+ + − + −)∞ are 0.3372, 0.5807 and 0.4643,
respectively.

We list in table 2 the admissible and forbidden intervals of ε for all the periodic orbits
with periods less than or equal to 5, two homoclinic orbits and two heteroclinic orbits.

Next, we give the geometrical explanation of the bifurcation point ε = 3/4 and the
persistence of two heteroclinic orbits (−∞+∞) and (+∞−∞) for 0 < τ < 1, i.e., for
0 < ε < +∞. From the geometrical description we see that the steady states corresponding
to the sequences (−∞ + · · · + −∞) and (+∞ − · · · − +∞) are spatially localized.

Note that for the linear transformation

A =
(

0 1
−1 2 + 2k

)

the unstable and stable manifolds of the origin are two lines with slopes 1/τ and τ , respectively.
The two-dimensional map T induced from the second-order difference equation (2.1) is

T

(
un

vn

)
= A

(
un

vn

)
+

(
0

2k

)
if vn � 0
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u

v

P

Q

A

B
C

E

D

F

T (A)

G

Figure 1. P = (−1, −1) and Q = (1, 1) are the fixed points of T. PA ⊂ Wu(P ),
PC ⊂ Ws(P ), QG ⊂ Ws(Q) and QF ⊂ Wu(Q). Note that the intersection of PA and
QG is always non-empty for 0 < τ < 1.

and

T

(
un

vn

)
= A

(
un

vn

)
+

(
0

−2k

)
if vn > 0.

Let U = (u, v)T , and a = (1, 1)T . If v − 1 � 0, then

T (U − a) = AU − Aa + (0, 2k)T = AU − a.

If the v-coordinate of AU − a is less than or equal to zero, then

T 2(U − a) = A2U − a.

Hence if the v-coordinate of Am−1U − a is less than or equal to zero, then

T m(U − a) + a = AmU m = 1, 2, . . . .

Similarly, if the v-coordinate of Am−1U + a is greater than zero, then

T m(U + a) − a = AmU m = 1, 2, . . . .

From these facts, we depict part of the stable and unstable manifolds of the fixed points
P = (−1,−1) and Q = (1, 1), respectively, see figure 1.

From the figure we know that for 0 < τ < 1,

Wu(P ) ∩ Ws(Q) 	= ∅ and Ws(P ) ∩ Wu(Q) 	= ∅
which implies that two heteroclinic orbits (−∞+∞) and (+∞−∞) persist for τ ∈ (0, 1).

Let A and B be the intersection points of Wu(P ) and v-axis, u-axis respectively, and C be
the intersection point of Ws(P ) and u-axis. Then

A = (0, 1/τ − 1) B = (τ − 1, 0) and C = (1/τ − 1, 0).

Note that

F = (1/τ − 1, 1 + 1/τ 2 − 2/τ)

is the intersection point of Wu(Q) and the line u = 1/τ − 1 passing through point C. Let

D = (0, 1/τ − 1 − 4k).
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Denote by
◦
BA the segment BA excluding point B. Then T (

◦
BA) = ◦

DT (A) in which

T (A) = (1/τ − 1, 1/τ 2 − 2/τ − 2τ + 3).

One can easily check that T (A) lies above point F. If D lies below E = (0, τ − 1), then
◦
DT (A) ∩Ws(P ) 	= ∅, which implies that the homoclinic orbit (−∞ + −∞) appears and then
all the sequences are admissible. It is easy to check that D laying below E is equivalent to
ε < 3/4.
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